material
Material
Material parameters.
Note
Not using a numba TypedDict because it is slower.
Properties ending with underscores are anisotropic parameters.
Lambda
instance-attribute
Lambda: numba_float = pop('Lambda', 0.06)
compression -> slope of CSL line (lambda)
R
instance-attribute
R: numba_float = pop('R', 0.0)
:math:R
, A material constant, :math:k_n=k_t\times R
b
instance-attribute
b: numba_float = pop('b', 1e-07)
:math:b
, Control the evolution rate of the grain breakage
c
instance-attribute
c: numba_float = pop('c', 0.0)
Usual ratio of extension to compression quantities
custom
instance-attribute
custom: Dict[str, numba_float] = empty(string, numba_float)
Custom parameters
erefu
instance-attribute
erefu: numba_float = pop('erefu', 0.8)
:math:e_{refu}
, Ultimate reference void ratio
fabrics
instance-attribute
fabrics: Dict[str, FabricTensor] = empty(string, FabricTensorType)
Anisotropic fabric tensors
fb0
instance-attribute
fb0: numba_float = pop('fb0', 0.0)
:math:\sigma_{b0}
, Initial adhesive normal stress
fc0
instance-attribute
fc0: numba_float = pop('fc0', 100.0)
:math:\sigma_{c0}
, Initial pre-consolidated stress
fnr
instance-attribute
fnr: numba_float = pop('fnr', 0.0)
Mean effective stress when log(e) = 1 in the LCC line (log(e) - log(p) space)
hp
instance-attribute
hp: numba_float = pop('hp', 5000.0)
:math:h_p
, Related to plastic modulus of bounding surface effect
integration
instance-attribute
integration: Integration = Integration(1000000000.0, 0.00065)
Integration
kp
instance-attribute
kp: numba_float = pop('kp', 0.0)
:math:k_p
, A parameter in the SimSand yield formula
kpr
instance-attribute
kpr: numba_float = pop('kpr', 1.0)
a ratio of normal stiffness (k_n) to peak stiffness (k_p)
krr
instance-attribute
krr: numba_float = pop('krr', 0.4)
a ratio of normal stiffness (k_n) to tangential stiffness (k_r)
m
instance-attribute
m: numba_float = pop('m', 0.0)
:math:m
, Control the distance between NCL and CSL
nd
instance-attribute
nd: numba_float = pop('nd', 0.5)
the exponential in the phase-transformation angle
ng
instance-attribute
ng: numba_float = pop('ng', 0.0)
:math:n_g
, An exponent in the formula of nonlinear shear modulus
np
instance-attribute
np: numba_float = pop('np', 1.0)
the exponential in the dynamic friction angle
nw
instance-attribute
nw: numba_float = pop('nw', 1.0)
:math:n_w
, Control the effect of plastic work to the grain breakage
rho
instance-attribute
rho: numba_float = pop('rho', 0.0)
:math:\rho
, Control the decreasing rate of CSL due to grain breakage
rhoc
instance-attribute
rhoc: numba_float = pop('rhoc', 0.0)
Slope of the LCC line in the log(e) - log(p) space
theta
instance-attribute
theta: numba_float = pop('theta', 0.0)
A constant exponent in the hardening behavior of p0
xi
instance-attribute
xi: numba_float = pop('xi', 0.5)
:math:\xi
, Control the nonlinearity of CSL line
xib
instance-attribute
xib: numba_float = pop('xib', 0.0)
:math:\xi_b
, A soil constant controls hardening rule of :math:\xi_b
xic
instance-attribute
xic: numba_float = pop('xic', 0.0)
:math:\xi_c
, A soil constant controls hardening rule of :math:\xi_c
Mc
Mc(
ba: float = 0.0,
Ra: float = 1.0,
weight_mises: float = 0.0,
weight_tresca: float = 0.0,
weight_mohr_coulomb: float = 1.0,
weight_smp: float = 0.0,
) -> float
Return the critical state slope for compression.
Mc_
Mc_(
idx: int,
ba: float = 0.0,
Ra: float = 1.0,
weight_mises: float = 0.0,
weight_tresca: float = 0.0,
weight_mohr_coulomb: float = 1.0,
weight_smp: float = 0.0,
) -> float
Return the critical state slope for compression.
Me
Me(
ba: float = 0.0,
Ra: float = 1.0,
weight_mises: float = 0.0,
weight_tresca: float = 0.0,
weight_mohr_coulomb: float = 1.0,
weight_smp: float = 0.0,
) -> float
Return the critical state slope for extension.
Me_
Me_(
idx: int,
ba: float = 0.0,
Ra: float = 1.0,
weight_mises: float = 0.0,
weight_tresca: float = 0.0,
weight_mohr_coulomb: float = 1.0,
weight_smp: float = 0.0,
) -> float
Return the critical state slope for extension.
__getitem__
Get the value of a parameter. This method is might be slower than direct getting the attribute.
__setitem__
Set the value of a parameter. This method is might be slower than direct setting the attribute.
anisotropicFactor
get_
mu
mu(
ba: float = 0.0,
Ra: float = 1.0,
weight_mises: float = 0.0,
weight_tresca: float = 0.0,
weight_mohr_coulomb: float = 1.0,
weight_smp: float = 0.0,
) -> float
Return the friction coefficient.
mu_
mu_(
idx: int,
ba: float = 0.0,
Ra: float = 1.0,
weight_mises: float = 0.0,
weight_tresca: float = 0.0,
weight_mohr_coulomb: float = 1.0,
weight_smp: float = 0.0,
) -> float
phi_
phi_(
idx: int,
ba: float = 0.0,
Ra: float = 1.0,
weight_mises: float = 0.0,
weight_tresca: float = 0.0,
weight_mohr_coulomb: float = 1.0,
weight_smp: float = 0.0,
) -> float
phi_combined
phi_combined(
ba: float = 0.0,
Ra: float = 1.0,
weight_mises: float = 0.0,
weight_tresca: float = 0.0,
weight_mohr_coulomb: float = 1.0,
weight_smp: float = 0.0,
) -> float
Friction angle considering combined failure criteria
setAnisotropicParameters
setAnisotropicParameters(
key: str,
type: AvailableFabricTypes = "chang1990-ext",
evolution: AvailableFabricEvolutionTypes = "zhao2020",
coefs: Dict[str, float] = None,
)
Set anisotropic parameters.
PARAMETER | DESCRIPTION |
---|---|
key
|
The key of the anisotropic parameter.
TYPE:
|
type
|
The type of the anisotropic parameter.
TYPE:
|
evolution
|
The evolution type of the anisotropic parameter.
TYPE:
|
coefs
|
The coefficients of the anisotropic parameter. |
sin_phi_mises
Friction angle sine of Von Mises failure criteria
sin_phi_smp
Friction angle sine of SMP failure criteria
sin_phi_tresca
Friction angle sine of Tresca failure criteria