Index
__all__
module-attribute
__all__ = [
"FitnessBase",
"LBFGSBOptimizer",
"NelderMeadOptimizer",
"optimizer_registry",
"OptimizerBase",
"OptimizerResult",
"PowellOptimizer",
"PYCMAOptimizer",
"PYCMAOptimizerResult",
"ScipyOptimizerResult",
"TNCOptimizer",
]
optimizer_registry
module-attribute
optimizer_registry: Registry[str, Type[OptimizerBase]] = Registry()
FitnessBase
Bases: HashableBaseModelIO
create
classmethod
create(
fitness: Union["FitnessBase", Type["FitnessBase"], str, None] = None,
**kwargs
) -> "FitnessBase"
Create a fitness object from the input.
PARAMETER | DESCRIPTION |
---|---|
fitness
|
Custom fitness object or class or the full name of the class, by default None
TYPE:
|
kwargs
|
Additional keyword arguments to pass to the fitness object
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
FitnessBase
|
The fitness object |
evaluate
Evaluate the fitness function, return the fitness and weights
lineOption
lineOption(
option: str,
experiment_name: str,
*,
option_name: str = "line_{option}",
experiment_option_name="line_experiment_{option}"
) -> Any
Get line options or experiment-specific line options.
match
classmethod
Check if the name matches any of the given patterns.
LBFGSBOptimizer
Bases: ScipyOptimizer
NelderMeadOptimizer
Bases: ScipyOptimizer
OptimizerBase
Base class for optimizers
objective_function
instance-attribute
objective_function: FitnessBase | Callable = objective_function
Objective function to optimize, the function's signature must be: f(x: Iterable) -> float
user_callback
instance-attribute
callback function that will be evaluated after each iteration
__init__
__init__(
objective_function: FitnessBase | Callable,
x0: ndarray,
*,
args: tuple = (),
bounds: ndarray | None = None,
callback: Callable[[Iterable], Any] | None = None,
maxiter: int = 1000,
maxfun: int = 10000,
**options
)
Initialize the optimizer
PARAMETER | DESCRIPTION |
---|---|
objective_function
|
Objective function
TYPE:
|
x0
|
Initial parameters
TYPE:
|
args
|
Additional arguments for the objective function
TYPE:
|
bounds
|
Bounds of the parameter
TYPE:
|
maxiter
|
Maximal number of iterations
TYPE:
|
maxfun
|
Maximal number of function evaluations
TYPE:
|
callback
|
Callback function that will be evaluated after each iteration
TYPE:
|
options
|
Optimizer-specific options |
fmin
classmethod
fmin(*args, **kwargs) -> OptimizerResult
Static method to do the optimization
PARAMETER | DESCRIPTION |
---|---|
args
|
Positional and keyword arguments for the optimizer
DEFAULT:
|
kwargs
|
Positional and keyword arguments for the optimizer
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
res
|
Optimize result
TYPE:
|
OptimizerResult
Bases: HashableBaseModelIO
OptimizeResult for the optimizers
fitness
class-attribute
instance-attribute
fitness for all experiments and lines
fitness_options
class-attribute
instance-attribute
fitness options
nfev
class-attribute
instance-attribute
nfev: int = 0
Number of evaluations of the objective functions
nit
class-attribute
instance-attribute
nit: int = 0
Number of iterations performed by the optimizer.
optimizer_options
class-attribute
instance-attribute
optimizer options
stds
class-attribute
instance-attribute
standard deviations of the parameters
weights
class-attribute
instance-attribute
weights for all experiments and lines
PYCMAOptimizer
Bases: OptimizerBase
defaultOptions
class-attribute
instance-attribute
PYCMAOptimizerResult
Bases: OptimizerResult
Optimize result for PYCMA package, just for annotation
PowellOptimizer
Bases: ScipyOptimizer
ScipyOptimizerResult
Bases: OptimizerResult
Represents the optimization result for scipy optimize algorithms
Notes
``OptimizeResult`` may have additional attributes not listed here depending
on the specific solver being used. Since this class is essentially a
subclass of dict with attribute accessors, one can see which
attributes are available using the `OptimizeResult.keys` method.
hess
class-attribute
instance-attribute
Values of Hessian, The Hessians may be approximations, see the documentation of the function in question.
message
class-attribute
instance-attribute
message: str = ''
Description of the cause of the termination.
status
class-attribute
instance-attribute
status: int = -1
Termination status of the optimizer. Its value depends on the underlying solver. Refer to message
for
details.
success
class-attribute
instance-attribute
success: bool = False
Whether the optimizer exited successfully.
TNCOptimizer
Bases: ScipyOptimizer