abc
CalibrationABC
Abstract base class for calibration classes.
calibrate
calibrate(
experiments: Union[
"Experiment", List["Experiment"], Dict[str, "Experiment"]
],
*,
includes: List[str | CalibrationKey] | None = None,
include_additions: List[str | CalibrationKey] | None = None,
excludes: List[str | CalibrationKey] | None = None,
experiment_specific_parameters: List[str] | None = None,
x0: Dict[str | CalibrationKey, float] | None = None,
bounds: Dict[str | CalibrationKey, Tuple[float, float]] | None = None,
stds: Dict[str | CalibrationKey, float] | None = None,
fitness: Union["FitnessBase", Type["FitnessBase"], str, None] = None,
error_fitness: float = 10000000000.0,
method: str = "PYCMA-CMAES",
save_to: str | None = None,
**kwargs
) -> Tuple[Dict[str, float], OptimizerResult]
Calibrate the yield function to the experiments.
PARAMETER | DESCRIPTION |
---|---|
experiments
|
Experiments to evaluate the fitness, by default None which means all experiments in the manager
TYPE:
|
includes
|
Parameters to include in the calibration, by default None which means all parameters
TYPE:
|
include_additions
|
Additional parameters to include in the calibration, by default None
TYPE:
|
excludes
|
Parameters to exclude from the calibration, by default None
TYPE:
|
experiment_specific_parameters
|
Optimization parameters that are specific to each experiment, by default None |
x0
|
Initial guess for the parameters, by default None
TYPE:
|
bounds
|
Bounds for the parameters, by default None
TYPE:
|
stds
|
Standard deviations for the parameters, by default None
TYPE:
|
fitness
|
Custom fitness object or class or the full name of the class, by default None
TYPE:
|
error_fitness
|
Fitness value to return if the simulation fails, by default 1e10
TYPE:
|
method
|
Optimization method, by default "PYCMA-CMAES"
TYPE:
|
save_to
|
Save the calibration results to a file, by default None
TYPE:
|
kwargs
|
Fitness or optimizer keyword arguments, if the fitness has attributes with the same name, the value will be set to the attribute, and other arguments will be passed to the optimizer
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Dict[str, float], OptimizerResult]
|
Optimized parameters and the optimization result |
fitness
fitness(
experiments: Union[
"Experiment", List["Experiment"], Dict[str, "Experiment"]
],
*,
x0: Dict[str, float] | None = None,
fitness: Union["FitnessBase", Type["FitnessBase"], str, None] = None,
error_fitness: float = 10000000000.0,
**kwargs
) -> float
Evaluate the fitness of the yield function to the experiments.