Fabric Tensors
Type of Fabric Tensors
The following fabric tensors are supported in the fabric
parameter in the type
parameter in the
Model.setAnisotropicParameters method
and Model.setMaterialAnisotropicParameters method.
Name | Equation | Parameters | References |
---|---|---|---|
chang1990 |
\(\mathbf{F}_{ij}=\begin{bmatrix} a_{20} & 0 & 0 \\ 0 & -\dfrac{a_{20}}{2}+3a_{22} & 3b_{22} \\ 0 & 3b_{22} & -\dfrac{a_{20}}{2}-3a_{22} \end{bmatrix}\) | \(a_{20},a_{22},b_{22}\) (a20,a22,b22 ) |
Chang and Misra (1990) 1 |
chang1990-ext |
\(\mathbf{F}_{ij}=\begin{bmatrix} a_{20} & -\dfrac{3}{2}a_{21} & 6b_{21} \\ -\dfrac{3}{2}a_{21} & -\dfrac{a_{20}}{2}+3a_{22} & 3b_{22} \\ 6b_{21} & 3b_{22} & -\dfrac{a_{20}}{2}-3a_{22} \end{bmatrix}\) | \(a_{20},a_{22},b_{22},a_{21},b_{21}\) (a20,a22,b22,a21,b21 ) |
|
general |
\(\mathbf{F}_{ij}=\begin{bmatrix} F_{11} & F_{12} & F_{13} \\ F_{12} & F_{22} & F_{23} \\ F_{13} & F_{23} & -F_{11}-F_{22} \end{bmatrix}\) | \(F_{11},F_{22},F_{12},F_{13},F_{23}\) (F11,F22,F12,F13,F23 ) |
|
general-cross-anisotropic |
\(\mathbf{F}_{ij}(\text{major_axes}=3)=\begin{bmatrix} -F/2 & Fhh & Fvh \\ Fhh & -F/2 & Fvh \\ Fvh & Fvh & F \end{bmatrix}\) | \(F,F_{hh},F_{vh}\) and major material axes (1/2/3) (F,Fhh,Fvh,major_axes ) |
Note
You can specify r1
, r2
, and r3
(in degrees) to rotate the fabric tensor along the x1
, x2
, and x3
axes,
respectively.
Fabric Evolution
The following fabric evolution models are supported in the evolution
parameter in the
Model.setAnisotropicParameters method
and Model.setMaterialAnisotropicParameters method.
Name | Equation | Parameters | References |
---|---|---|---|
wan2004 |
\(\dot{\mathbf{F}}=\chi\dot{\boldsymbol{\eta}}=\chi\left(\dfrac{\dot{\mathbf{s}}}{p}-\dfrac{\dot{p}}{p^2}\mathbf{s}\right)\) | \(\chi\) (chi ) |
Wan and Guo (2004) 2 |
sun2011 |
\(\dot{\mathbf{F}}=s_1\dot{\boldsymbol{\epsilon}}+s_2\|\dot{\boldsymbol{\epsilon}}\|\mathbf{F}+s_3\left(\mathbf{F}:\dot{\boldsymbol{\epsilon}}_q\right)\mathbf{F}\) | \(s_1,s_2,s_3\) (s1,s2,s3 ) |
Sun and Sundaresan (2011) 3 |
li2012 |
\(\dot{\mathbf{F}}=c(\mathbf{n}_l-r\mathbf{F})\langle\lambda\rangle\) | \(c,r\) (c,r ) |
Li and Dafalias (2012) 4 |
yang2014 |
\(\dot{\mathbf{F}}=c_1(1+c_2\Vert\boldsymbol{\eta}\Vert)\dot{\boldsymbol{\eta}}\) | \(c_1,c_2\) (c1,c2 ) |
Yang (2014) 5 |
hu2015 |
\(\dot{\mathbf{F}}=c_1(1+c_2\Vert\boldsymbol{\eta}\Vert)\dot{\boldsymbol{\eta}}+c_3(c_4\boldsymbol{\eta}-\mathbf{F})\Vert\dot{\mathbf{\epsilon}}_q\Vert\) | \(c_1,c_2,c_3,c_4\) (c1,c2,c3,c4 ) |
Hu (2015) 6 |
zhao2020 |
\(\begin{aligned} &\dot{\mathbf{F}}=h\left\{F_c-\mathbf{F}:\dfrac{\dot{\boldsymbol{\epsilon}}_q^p}{\Vert\dot{\boldsymbol{\epsilon}}_q^p\Vert}\exp\left[m(M-\eta)+n\psi\right]\right\}\dot{\boldsymbol{\epsilon}}_q^p\\ &M=g_s(\theta_s)M_c,F_c=g_F(\theta_F)F_{c0},\psi=e-e_c(p)\\ &g_s(\theta)=\dfrac{2c}{(1+c)-(1-c)\cos(3\theta)},c=M_e/M_c\\ &g_F(\theta)=\dfrac{1}{g_s(\theta)} \end{aligned}\) | \(M_c,M_e,F_{c0},h,m\) (Mc,Me,Fc0,h,m,n ) |
Zhao and Kruyt (2020) 7 |
wang2020 |
\(\dot{\mathbf{F}}=\vert\varepsilon_q\vert c_c\left[\dfrac{\exp\left[-\beta(1+A_p)\right]^m}{1+c_{cd}D}\mathbf{n}-\mathbf{F}\right]\) | \(\beta,m,c_c,c_{cd}\) (beta,m,cc,ccd ) |
Wang et al. (2020) 8 |
wang2024 |
\(\dot{\mathbf{F}}=c_1(1+c_2\Vert\dot{\boldsymbol{\eta}}\Vert)\dot{\boldsymbol{\eta}}\) | \(c_1,c_2\) (c1,c2 ) |
This work |
Note
You can use the +
operator to combine multiple fabric evolution models as long as there are no conflicting
parameters. For example, wan2004+sun2011
will combine the wan2004
and sun2011
fabric evolution models, in
which the fabric tensor increment is calculated as the sum of the fabric tensor increments calculated by both
models.
References
-
Ching S. Chang and Anil Misra. Packing Structure and Mechanical Properties of Granulates. Journal of Engineering Mechanics, 116(5):1077–1093, May 1990. doi:10.1061/(ASCE)0733-9399(1990)116:5(1077). ↩
-
Richard G. Wan and Pei J. Guo. Stress Dilatancy and Fabric Dependencies on Sand Behavior. Journal of Engineering Mechanics, 130(6):635–645, June 2004. doi:10.1061/(ASCE)0733-9399(2004)130:6(635). ↩
-
Jin Sun and Sankaran Sundaresan. A constitutive model with microstructure evolution for flow of rate-independent granular materials. Journal of Fluid Mechanics, 682:590–616, September 2011. doi:10.1017/jfm.2011.251. ↩
-
Xiang Song Li and Yannis F. Dafalias. Anisotropic Critical State Theory: Role of Fabric. Journal of Engineering Mechanics, 138(3):263–275, March 2012. doi:10.1061/(ASCE)EM.1943-7889.0000324. ↩
-
Dunshun Yang. Microscopic Study of Granular Material Behaviours under General Stress Paths. PhD thesis, University of Nottingham, 2014. URL: http://eprints.nottingham.ac.uk/14251/. ↩
-
Nian Hu. On Fabric Tensor-Based Constitutive Modelling of Granular Materials: Theory and Numerical Implementation. PhD thesis, University of Nottingham, 2015. ↩
-
Chao-Fa Zhao and Niels P. Kruyt. An evolution law for fabric anisotropy and its application in micromechanical modelling of granular materials. International Journal of Solids and Structures, 196-197:53–66, July 2020. doi:10.1016/j.ijsolstr.2020.04.007. ↩
-
Rui Wang, Yannis F. Dafalias, Pengcheng Fu, and Jian-Min Zhang. Fabric evolution and dilatancy within anisotropic critical state theory guided and validated by DEM. International Journal of Solids and Structures, 188-189:210–222, April 2020. doi:10.1016/j.ijsolstr.2019.10.013. ↩